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Heat
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Heat flows from warm to cold, Fourier law

Heat = energy contained in excited phonons (lattice vibrations)
for liquids: additionally in rotation of molecules
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Heat flux
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Which parameters determine the final state (temperature distribution) ?

thermal capacity, density/mass
Which parameters influence the dynamics of the flow?

thermal capacity, thermal conductivity, density
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How heat can be transported?
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Radiation

Other (indirect) means?
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Phase Transition

evaporation needs
much more (5x-10x)
energy than melting
and heating the
material !!!

Laser Micro-Processing, EPFL

1201

temperature "1
("C)
B

B0 4

407

Gradient = 1/specific
heat capacity of water

gas
vapour
bailing
liquid Gradient = 1/specific
melting heat capacity of water

1

< Gradient = 1/specific

1] solid heat capacity of ice

heat absorbed

1 kg of steam
at 100°C

+ b5 kcals + 540 keak

P. Hoffmann



Heat Transfer Using Phase Transition
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Evaporation require a lot of heat —
efficient heat transfer

In laser processing can generate
high losses - important to consider
for efficient laser processing!!!
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Circulating pump

Heat Source
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Transport Phenomena

e Heat flow

e Viscosity

Driving force for transport are spatial inhomogeneities, i.e. gradients

e Materials flow (diffusion)

j = —Ceradp
10 ;

_— = CT_

ot P

Transported quantity

System state

Material property

Nom de I'eq. V.1-1 j P cC
Fourier Heat flow T Kipcp

Fick Mass flow [n] D

Newton Momentum flow V I
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Transport phenomena

e Solution of Fick’s law

Solutions to these equations
exist for simple cases such as a grain of salt in water

same solution for the point source of heat
In homogeneous medium

2,
o "tot —r /4D1
[n|(r, t) = 5

B{Ttﬂmﬁr} |
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Table of material properties

Matériaux P Lol T, [K] T, [K] ¢p [JIgK] K [Wiem K] D [em?s]
cm3]
Al 27 933 2720 0,90 2.4 1,03 good metal
Al,O4 40 2324 0,75 0,30
Al O3 cerami- 3,89 2340 3800 0,9 0,3 0.086
que) '
Au 19,3 1338 2980 0,13 3,15 1,22 good metal
C graphite 2,24 3923 4623 0.71 20; (22,3 |; 0,11
1)
C gamond 3,52 > 3822 0,50 20
Cr 7.2 2130 2945 0,46 0,95 0,29
Cu 8,95 1357 2840 0,39 3,95 1,14
Fe (coulé) 74 0,57 0,56 0,12
Acier (0.1% 7,85 0,49 0,46 0,12
C)
Acier inox 8,03 1723 3273 0,5 0,15
(304)
H,0 1 273 373 418 0,06 0,014
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Heat flow

form of the equation in case the external heat source is present

how temperature field
changes in time

v
/ z%'r' d:{r = ﬂv T-I—d-—ah t)

ot T FT

based on existing and external heat
temperature sources and heat
distribution losses
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Heat Source — Laser Irradiation

e Heat flux

— Laser heating depends on a large number of
parameters

Optical properties of material (R, a, ..)

e Heat transport in and out of irradiation zone
e Heat storage in and out of zone

e Phase transition Enthalpies

e Chemical reaction Enthalpies

Laser Micro-Processing, EPFL P. Hoffmann 12



Laser (light) Source Term

Qu,p = Ny =R Ty = 19y Ty Ao

the (maximum) laser light intensity not reflected
from surface (z=0).

i
- g the intensity distribution of the laser light
(X,y) inthe xy-plane.
. heat distribution in depth [t N
f, =a(T(z))exp| - j a(T(2')dz'
_ 0 |
in simplified case a(T)=const f(z) = exp(—az)
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Heat Losses and Other Terms
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liquid Gradient = 1/specific
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|
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heat absorbed

Chemical reactions
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Free Convection

n=n(T)

77(Ts):770' T (OO)

For surface A > 1cm?
air 17, ~10™ [W [ cm?K

liquid 77, ~0.1-0.3[ W / cm?

1

T —T () )4

]

cooling by gas convention is not very efficient
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Laser Welding

Liquid convection still plays an important role in “slow” processes.
e.g. welding (drilling, cutting)

laser beam

/ 7////¢//////N ]
melt Sample movement welded seam

Laser Micro-Processing, EPFL P. Hoffmann
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Radiation Cooling

=c-¢-T°

Stefan—Boltzmann law .
J radiat.

Stefan-Boltzmann constant: o = 5.7-1012[ V;/ 4}
cm°K

Total emissivity: ¢ = ¢(T)

polished metal: £ ~0.02-0.05 increases very strongly
oxidized metal: £ 0.6 -0.7 with temperature!!!

glass, silica: £~0.93 maybe important in some
soot: ¢ ~0.98 cases.
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Phase changes & Chemical reactions

Qphase.trans. = Vsolid—liquid ' AH melting T Vquuid—gasAH vaporasation

AH_= 2-10 kcal/mol AH,= 50-100 kcal/mol
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Comparison: Convection - Radiation

J..=J +J

loss
Jios = 1T (%, ¥,0,) =T, ()] + 0,6, | T,* (%, ,0,8) =T, (e0) |

Example: emissivity 0.4

At: T, =1000K J.~J, =3[W/cm’



Cooling/heating terms

 Convection may place a role for cooling of the
whole machined piece of material — not
relevant for machining

« Radiation maybe have contribution at very
high temperatures

* |n most cases cooling of the laser machined
region takes place by heat conduction in the
piece

Laser Micro-Processing, EPFL P. Hoffmann
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Thermal Penetration Depth

* Pulsed laser irradiation results in a temperature
rise in the material to a limited depth.

Thermal
penetration depth

Heat diffusivity

Laser Micro-Processing, EPFL

thermal —

[ = 2\/DT

pulse

K
D=
p Cp

K — heat conductivity
p — material density
C, — heat capacity

Target material Target material Target material

Bl Dark area: Heat affected zone  ~— Blue line: Shock waves
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Heat equation moving substrate

heating of the heat brought heat conducted
material by moving away

) Qe DOV IR IDETe, D,V TED

O(x,f) [W/em’] = Heat source
= Energy deposited, consumed or absorbed by unit of volume

p(7) [g-’cm'ﬂ‘] = Mass density

¢,(1) [VgK]= Specific heat at constant pressure

v, [em/s] = Relative speed of sample to beam
K [W/cm K] = Thermal conductivity

D [em*/s] = Heat diffusivity
K
pe,

D:
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Heat flow in 3 dimension

5!:—‘

- T _ po?re Qg g
" " e
Solution:
2
A Q -
Iz, 1) = {411:5'?}}”{((2 E};p[ iLDI]
pc »

m = dimension of problem (m =1, 2, 3)
Q = total energy deposited
p = mass density per distance, surface or volume (g/cmm)
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Laser Welding

What is the dimensionality of the heat flow problem at each of the stages?

Laser beam
DDDDODIT I

.
o,

sample

LLLLL

- >
A AT %
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Result of linearized heat equation

e Semi-infinite substrate

e Si, A=514 nm
— All optimized to get
T .o IN center of 287°C

['C]

Temperature

Distance from spot center r (um)

case Waist w, (um) Power (mW)
a 1 173.5
b 5 574
C 15 1535

Laser Micro-Processing, EPFL

P. Hoffmann 26



Result of numerical heat flow simulations

e Semi-infinite substrate

e Si, ,=514 nm

temperature dependence of
heat conductivity and
reflectivity is important to
consider!!!!

Laser Micro-Processing, EPFL
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Heat Accumulation - Effect of the Repetition Rate

Photoresist Vacrel 8230

a~5000cm-1@308nm — deep light penetration

effect visible at low rep.rate

~ br
§ - Vacrel 8230
L 5F g7 0y @ Yvg vgvgy v
= v o © &
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Figure 3. Ablation etching rate curves for Vacrel™ 8230
photoresist measured at 308 nm and 10, 100, 200 and

300 Hz. There is a clear shift in the ablation etching rate

curves to lower fluence as the repetition rate increases.
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Polyimide

a~105cm-1@308nm - absorption on the surface
Effect will be visible only at high rep.rate

— 0.8
5 Polyimide 5,
S A
'z 0
£ o.8f %
Ao
E’ 0,000
a s
. 0.4 éﬂo.m
e Qaé & 10 Hz
= ¢
E"— 0.2 éfjﬁ o 300 Hz
= ij
=
L L 1 L L . |

0.0
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Figure 2. Ablation etching rates for polyimide measured at
308 nm and 10 and 300 Hz. There is no repetition rate
effect for polyimide in this range of repetition rates.
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Heat Accumulation

=1
—
on

100 KHz

10 KHz
1 KHz
0 KHz

. " PI, 308 nm, 11 shot
Polyimide ! SOt

a~105cm-1@308nm - absorption on the surface

Effect will be visible only at high rep.rate .
0.10t

0.05f

Etch Depth per Pulse (micron)

0.00

1 1 n 1 | 1 i L | L 1 " i
0.05 0.10 0.15 0.20
Fluence (J/cmzl

Figure 6. The simulated etching rate versus fluence for Pl

at 308 nm. Curves for repetition rates of 0, 1 and 10 kHz
are closely grouped.

high repetition rate v results vV~ O_ngZ /' N
in heat accumulation effect eff

and Increase In ablation rate Burns F.C. and Cain S.R.:

J. Phys. D. Appl. Phys., 29 (1996)
1349
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Complete heat transfert through wall/window

‘]trans — A(Tl o T2)77trans trans [J /S W]
1 - J
ntrans — 1 S 1 2
| | cm-skK
771 Kw T — —
o 2 WIindow  Myans = 2-10™ [W /cmzK]

wall  7gans =0.5-107 W /cm’K |
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ns-machining vs. fs-machining

LONG PULSE
‘/LASEH BEAM
EJECTED MOLTEM

MATERML DAMAGE CAUSED TO

SURFACE DEBRIS ADIACENT STRUCTURES

SURFACE RIPPLES DUE
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HEAT TRANSFER
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Ultrafast Laser Pulses

for t<1-10 ps pulses - light absorption is faster than heat transfer from
electron to atoms

b)

hot
electrons cool electrons

. lattice
cool lattice \

c)

hot,
superheated
lattice

cooling
electrons

1/2
heating rate is very high — heat penetration is low fﬂ? = Z{Drf)
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fs-laser machining

Diamant

R
L'II-'. epac 16791

Silizium

Spezi
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